Name	:	Geologic Time
Date:	Period:	Earth Science
	Packet: Absolute Dating	
CLAS	S NOTES	
•	Absolute Dating	
•		
•	Isotopes -	
	Example: carbon has a mass of 12 units ca carbon has a mass of 14 units called Carbo	
•	Half-life	
	In a given sample of a radioactive isotope half of the atoms will dec product, but the remaining half is still	

• Each element has its own half-life that range from fractions of a second to billions of years

RADIOACTIVE ISOTOPE	DISINTEGRATION	HALF-LIFE (years)		
Carbon-14	$^{14}C \rightarrow ^{14}N$	5.7×10^{3}		
Potassium-40	⁴⁰ K → ⁴⁰ Ar	1.3 × 10 ⁹		
Uranium-238	²³⁸ U→ ²⁰⁶ Pb	4.5×10^{9}		
Rubidium-87	⁸⁷ Rb→ ⁸⁷ Sr	4.9×10^{10}		

Radioactive Decay Data

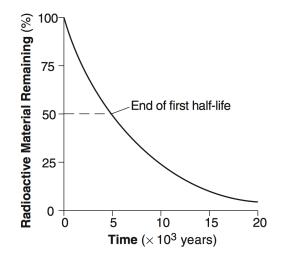
Packet: Absolute Dating

<u>Uranium-238</u> - _____

٠

- Mass: 238 units
- Decay: Uranium-238 \rightarrow Lead-206
- Half-Life: 4,500,000,000 years
- <u>Carbon-14</u> _____
 - Mass: 14 units
 - Decay: Carbon-14 \rightarrow Nitrogen-14
 - Half-Life: 5,700 years
- Lets give it a try...fill in data table below for C-14 and it's daughter element N-14

Half-life	Percentage of Unstable C-14	Percentage of Stable N-14	Number of Years
0	100%	0%	0
1			
2			
3			
4			
5			


Packet: Absolute Dating

PART I QUESTIONS: MULTIPLE CHOICE

- 1. Which radioactive substance would probably be used in dating the recent remains of a plant found in sedimentary deposits?
 - a. carbon-14
 - b. potassium-40
 - c. rubidium-87
 - d. uranium-238
- 2. Why is carbon-14 not usually used to accurately date objects more than 50,000 years old?
 - a. Carbon-14 has a shorter half-life and not enough carbon-14 has decayed after 50,000 years.
 - b. Carbon-14 has been introduced as an impurity in most materials older than 50,000 years.
 - c. Carbon-14 has a relatively short half-life and too little carbon-14 is left after 50,000 years.
 - d. Carbon-14 has only existed on Earth during the last 50,000 years.
- 3. If a radioactive material were cut into pieces, the half-life of each piece would be?
 - a. less than the original specimen's half-life
 - b. greater than the original specimen's half-life
 - c. the same as the original specimen's half-life
- 4. A rock contains uranium-238, which has a half-life of 4.5 x 10⁹ years. If the rock is crushed and heated, the half-life of the uranium-238 it contains will
 - a. increase
 - b. remain the same
 - c. decrease
- 5. Why are radioactive materials useful for measuring geologic time?
 - a. Measurable samples of radioactive materials are easily collected from most rock types.
 - b. The half-lives of most radioactive materials are less than five minutes.
 - c. The disintegration of radioactive materials occurs at a predictable rate.
 - d. The ratio of decay products to undecayed material remains constant in sedimentary rocks.
- 6. Which radioactive element is best suited for determining the age of wooden tools used by prehistoric humans during the last ice age?
 - a. rubidium-87
 - b. uranium-238
 - c. potassium-40
 - d. carbon-14
- 7. Which radioactive element has a half-life of 4.5 billion years?
 - a. carbon-14
 - b. rubidium-87
 - c. uranium-238
 - d. potassium-40

Packet: Absolute Dating

The graph below shows the decay of a radioactive material over time.

- 8. How long does it take for this radioactive material to decay through 2 half-lives?
 - a. 1×10^3 years
 - b. 5×10^3 years
 - c. 10×10^3 years
 - d. 40×10^3 years
- 9. Due to radioactive decay, an igneous rock sample now contains one-fourth of the amount of potassium-40 that it originally contained. The age, in years, of this rock sample is approximately
 - a. 0.7×109 years
 - b. 2.6 ×10⁹ years
 - c. 1.3×10⁹ years
 - d. 5.2 ×109 years
- 10. A rock contains uranium-238, which has a half-life of 4.5 x 10⁹ years. If the rock is crushed and heated, the half-life of the uranium-238 it contains will
 - a. increase
 - b. remain the same
 - c. decrease
- 11. If the amount of carbon-14 in the original sample had been 48 grams, about how much carbon-14 would have been left after 17,100 years?
 - a. 12 grams
 - b. 6 grams
 - c. 3 grams
 - d. 24 grams